DE LA RECHERCHE À L'INDUSTRIE

HPSS IN EMBEDDED STORAGE SYSTEMS AT CEA

HPSS USER FORUM 2016

www.cea.fr

TOPICS

- Overall architecture
- HPSS systems
- Embedded architecture
- HPSS movers configuration
- Benchmarks
- Plans

COO TERA, TGCC AND FRANCE GENOMIQUE

- 2 compute centers:
 - TERA for defense applications
 - TGCC for European research
 - hosting *France Génomique* (storage of DNA sequencing data)
 - **→** 3 HPSS systems
- Compute power:
 - TERA1K
 - P1: 2.586 Pflops
 - P2: 25 PFlops
 - **TGCC/Curie:** 3.2 PFlops
 - Fr. Génomique: ~100 Tflops
- 2 compute centers with a similar design:
 - Nearly the same architecture, technologies, tools and system software...

COMPUTE CENTERS ARCHITECTURE

GS1K architecture

- User interface: Lustre/HSM (Lustre 2.5.3, upgrade to Lustre 2.7 in Q1 2017)
 - Seamless integration of HPSS as a Lustre backend

GLOBAL STORAGE ARCHITECTURE

Main idea

5 subsystems

Subsystems	Roles	Detail
GS1K-DL	Scratch Lustre FS (Fastest)	~530 GB/s, 10 PB
GS1K-DC	Store Lustre / HPSS	~225 GB/s, 30 PB
GS1K-MG	Management servers for the storage cluster	Spoms, Subnet managers, NFS servers
GS1K-MD	Metadata servers : Lustre (MDS), HPSS (DB2), Robinhood (MariaDB)	High frequency cpu servers, NetApp E-series 5600 (72 SSDs 400 GB)
GS1K-DM	Data movers : Lustre Agents (HPSS copytool), Lustre routers, HPSS tape movers	27 servers + 7 tape movers

GLOBAL STORAGE ARCHITECTURE, WHICH GOALS?

An agile storage cluster:

- Idea: put Lustre and HPSS servers in the same cluster
 - Same kind of hardware for HPSS core and Lustre MDS (MD part)
 - Same kind of hardware for HPSS movers and Lustre OSS (DC part)
- Expected benefits:
 - Single Point Of Management, monitoring, ...
 - Homogeneous hardware
 - Allow reallocating disk resources between Lustre and HPSS depending on their respective needs.
 - Reduce the datacenter footprint

	Old system (2014 status)	New system
HPSS version	HPSS 7.3.3 p9b	HPSS 7.4.3p2
OS	RHEL 6.4	CentOS 6.7
Disk level	3 NetApp E-5400 ~800 TB	1xDDN SFA14K-E 5 PB
Libraries	3 SL8500	3 SL8500
Tape techno	LTO5 (50 drives)	LTO5 (40 drives) T10KD (43 drives)
Lustre FS front-end	15 PB	20 PB
Stored in HPSS	34 PB	57 PB

COO EMBEDDED STORAGE FOR DISK LEVEL: SFA14K-E

HPSS DISK LEVEL based on DDN SFA14K-E:

- x2 singlets with this configuration :
 - Bi-sockets Intel Haswell E5-2695
 - __ 128 GB RAM
 - 2 Mellanox Infiniband Connectx4 EDR dual ports
 - 2 Ethernet Gigabit ports
 - x4 Internal SSD Toshiba 480 GB
 - x5 SSD Toshiba 480 GB

SFA14K-E: HOW IS INSIDE?

CEA SFA14K-E: WHAT CAN WE DO WITH?

- DDN SFA14K-E relies on KVM with a QEMU modified version
- Key features:
 - RAID 1, 5 or 6 available for disks pool
 - up to 8 Virtual Machines
 - 48 cores to assign to VMs
 - 160 GB RAM to shared between VMs
 - PXE boot
 - SRIOV capabilities (Infiniband + Ethernet)
 - SFA Block driver (to « attach » enclosures disks to VMs)

DDN Terminology:

- POOL : disks raid group
- VIRTUAL DISK (VD): block device seen by VMs, part or a complete POOL
- STACK : one VM
- IOC : Virtual Function (Ethernet/Infiniband) = network interface seen by VM
- IMAGE PATH : VM disk image

cea

SFA14K-E: HPSS MOVERS CONFIGURATION

Key points for HPSS MOVERS :

- RAID 6 pool disks for enclosures 8462 => 80 pools of 8+2 (10 hotspares, one per enclosure)
- 320 VD on the 80 pools => 3 BIG VD (19 712GB) and 1 SMALL VD (376GB)
- 8 Virtual Machines => 8 HPSS disk movers (CentOS 6.7)
- 6 Vcpu / mover
- 20 GB RAM / mover
- 1 dedicated Infiniband IOC per VM => 1 VM use 1 EDR link (100 Gbits/s)
- 1 share Ethernet IOC by VM (mover administration)
- 1 image path to store /boot

Details :

- All HPSS communications through Infiniband EDR (IPoIB)
- /boot contains initram with SFA Block Driver module
- Root (/) are on SSD drives
- 40 devices / mover : 30 big, 10 small (distributed in 3 storage classes)

HPSS MOVERS EMBEDDED BENCHMARKS

Inputs:

- hpss_readlist/hpss_writelist
- File size 20 GB
- 10 clients with Infiniband EDR link (same Fabric as movers)

- Performance are good ... Files number (one file=20GB)
- Same hardware with Lustre, IOR benchmark => 33 GB/s ...(RDMA usage)
- But not bad, due to IPoIB overhead, CPU bound, pretty hard to go up to 70 Gbits/s per EDR link
- HPSS chooses devices automatically, sometimes, devices fall on the same poolperformance decrease

SFA14-KE is a working platform:

- performance answers to our needs
- The flexibility is here (we can grow Lustre FS or HPSS, easily)
- Footprint is lower than before
- homogeneous administration

Drawbacks

- Seems to be a SPOF but failover feature
- Low footprint but density is not light (check your datacenter infrastructure and the floor strength)
- Haswell limitation on heavyload, expect better performance with broadwell

CEA PLANS FOR 2016-2017

- Q4 2016:
 - SFA14-KE tests with flash disks
 - SFA14-KE Passthrough feature (Latency impact ?)
 - RAIT
 - Upgrade HPSS movers to EL7 (7.4.3p3 migration)
- Q1 2017:
 - Upgrade to SFA14-KXE (Broadwell Processor)
 - HPSS 7.5.1 Validation
- Q2 2017:
 - Upgrade core server to EL7 (7.5.1 migration)
- Q3 2017:
 - Lustre store extension with Flash disks @1TB/s
- Q4 2017:
 - T1K Phase 2

© Thomas Leibovici slide

Commissariat à l'énergie atomique et aux énergies alternatives CEA / DAM Ile-de-France | Bruyères-le-Châtel - 91297 Arpajon Cedex T. +33 (0)1 69 26 40 00 DAM Île-de-France